27 research outputs found

    Generating Concurrency Checks Automatically

    Get PDF
    This article introduces ATAB, a tool that automatically generates pairwise reachability checks for action trees. Action trees can be used to study the behaviour of real-world concurrent programs. ATAB encodes pairwise reachability checks into alternating tree automata that determine whether an action tree has a schedule where any pair of given points in the program are simultaneously reachable. Because the pairwise reachability problem is undecidable in general ATAB operates under a restricted form of lock-based concurrency. ATAB produces alternating tree automata that are more compact and more efficiently checkable than those that have been previously used. The process is entirely automated, which simplifies the process of encoding checks for more complex action trees. The alternating tree automata produced are easier to scale to large numbers of locks than previous constructions.Comment: 15 pages, 9 figure

    A tale of two models: formal verification of KEMTLS via Tamarin

    Get PDF
    KEMTLS is a proposal for changing the TLS handshake to authenticate the handshake using long-term key encapsulation mechanism keys instead of signatures, motivated by trade-offs in the characteristics of post-quantum algorithms. Prior proofs of security of KEMTLS and its variant KEMTLS-PDK have been hand-written proofs in the reductionist model under computational assumptions. In this paper, we present computer-verified symbolic analyses of KEMTLS and KEMTLS-PDK using two distinct Tamarin models. In the first analysis, we adapt the detailed Tamarin model of TLS 1.3 by Cremers et al. (ACM CCS 2017), which closely follows the wire-format of the protocol specification, to KEMTLS(-PDK). We show that KEMTLS(-PDK) has equivalent security properties to the main handshake of TLS 1.3 proven in this model. We were able to fully automate this Tamarin proof, compared with the previous TLS 1.3 Tamarin model, which required a big manual proving effort; we also uncovered some inconsistencies in the previous model. In the second analysis, we present a novel Tamarin model of KEMTLS(-PDK), which closely follows the multi-stage key exchange security model from prior pen-and-paper proofs of KEMTLS(-PDK). The second approach is further away from the wire-format of the protocol specification but captures more subtleties in security definitions, like deniability and different levels of forward secrecy; it also identifies some flaws in the security claims from the pen-and-paper proofs. Our positive security results increase the confidence in the design of KEMTLS(-PDK). Moreover, viewing these models side-by-side allows us to comment on the trade-off in symbolic analysis between detail in protocol specification and granularity of security properties

    Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions

    Get PDF
    A recent strategy that has emerged for the design of increasingly functional hydrogels is the incorporation of nanofillers in order to exploit their specific properties to either modify the performance of the hydrogel or add functionality. The emergence of carbon nanomaterials in particular has provided great opportunity for the use of graphene derivatives (GDs) in biomedical applications. The key challenge when designing hybrid materials is the understanding of the molecular interactions between the matrix (peptide nanofibers) and the nanofiller (here GDs) and how these affect the final properties of the bulk material. For the purpose of this work, three gelling β-sheet-forming, self-assembling peptides with varying physiochemical properties and five GDs with varying surface chemistries were chosen to formulate novel hybrid hydrogels. First the peptide hydrogels and the GDs were characterized; subsequently, the molecular interaction between peptides nanofibers and GDs were probed before formulating and mechanically characterizing the hybrid hydrogels. We show how the interplay between electrostatic interactions, which can be attractive or repulsive, and hydrophobic (and π–π in the case of peptide containing phenylalanine) interactions, which are always attractive, play a key role on the final properties of the hybrid hydrogels. The shear modulus of the hydrid hydrogels is shown to be related to the strength of fiber adhesion to the flakes, the overall hydrophobicity of the peptides, as well as the type of fibrillar network formed. Finally, the cytotoxicity of the hybrid hydrogel formed at pH 6 was also investigated by encapsulating and culturing human mesemchymal stem cells (hMSC) over 14 days. This work clearly shows how interactions between peptides and GDs can be used to tailor the mechanical properties of the resulting hydrogels, allowing the incorporation of GD nanofillers in a controlled way and opening the possibility to exploit their intrinsic properties to design novel hybrid peptide hydrogels for biomedical applications

    Books in Arabic Script

    Get PDF
    The chapter approaches the book in Arabic script as the indispensable means for the transmission of knowledge across Eurasia and Africa, within cultures and across cultural boundaries, since the seventh century ad. The state of research can be divided into manuscript and print studies, but there is not yet a history of the book in Arabic script that captures its plurilinear development for over fourteen hundred years. The chapter explores the conceptual and practical challenges that impede the integration of the book in Arabic script into book history at large and includes an extensive reference list that reflects its diversity. The final published version was slightly updated, and includes seven illustrations of six Qurans from the holdings of Columbia University Libraries, four manuscripts and two printed versions. Moreover, the illustrations are images of historical artifacts which are in the public domain - despite Wiley's copyright claim

    Pain patterns and descriptions in patients with radicular pain: Does the pain necessarily follow a specific dermatome?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is commonly stated that nerve root pain should be expected to follow a specific dermatome and that this information is useful to make the diagnosis of radiculopathy. There is little evidence in the literature that confirms or denies this statement. The purpose of this study is to describe and discuss the diagnostic utility of the distribution of pain in patients with cervical and lumbar radicular pain.</p> <p>Methods</p> <p>Pain drawings and descriptions were assessed in consecutive patients diagnosed with cervical or lumbar nerve root pain. These findings were compared with accepted dermatome maps to determine whether they tended to follow along the involved nerve root's dermatome.</p> <p>Results</p> <p>Two hundred twenty-six nerve roots in 169 patients were assessed. Overall, pain related to cervical nerve roots was non-dermatomal in over two-thirds (69.7%) of cases. In the lumbar spine, the pain was non-dermatomal in just under two-thirds (64.1%) of cases. The majority of nerve root levels involved non-dermatomal pain patterns except C4 (60.0% dermatomal) and S1 (64.9% dermatomal). The sensitivity (SE) and specificity (SP) for dermatomal pattern of pain are low for all nerve root levels with the exception of the C4 level (Se 0.60, Sp 0.72) and S1 level (Se 0.65, Sp 0.80), although in the case of the C4 level, the number of subjects was small (n = 5).</p> <p>Conclusion</p> <p>In most cases nerve root pain should not be expected to follow along a specific dermatome, and a dermatomal distribution of pain is not a useful historical factor in the diagnosis of radicular pain. The possible exception to this is the S1 nerve root, in which the pain does commonly follow the S1 dermatome.</p

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    A Comprehensive Symbolic Analysis of TLS 1.3

    No full text
    The TLS protocol is intended to enable secure end-to-end communication over insecure networks, including the Internet. Unfortunately, this goal has been thwarted a number of times throughout the protocol's tumultuous lifetime, resulting in the need for a new version of the protocol, namely TLS 1.3. Over the past three years, in an unprecedented joint design effort with the academic community, the TLS Working Group has been working tirelessly to enhance the security of TLS. We further this effort by constructing the most comprehensive, faithful, and modular symbolic model of the TLS 1.3 draft 21 release candidate, and use the TAMARIN prover to verify the claimed TLS 1.3 security requirements, as laid out in draft 21 of the specification. In particular, our model covers all handshake modes of TLS 1.3. Our analysis reveals an unexpected behaviour, which we expect will inhibit strong authentication guarantees in some implementations of the protocol. In contrast to previous models, we provide a novel way of making the relation between the TLS specification and our model explicit: we provide a fully annotated version of the specification that clarifies what protocol elements we modelled, and precisely how we modelled these elements. We anticipate this model artifact to be of great benefit to the academic community and the TLS Working Group alike
    corecore